Semi-parametric analysis of efficiency and productivity using Gaussian processes
Grigorios Emvalomatis
The Econometrics Journal, 2020, vol. 23, issue 1, 48-67
Abstract:
SummaryThis paper proposes a fully Bayesian semi-parametric method for efficiency and productivity analysis based on Gaussian processes. The proposed technique frees the researcher from having to specify a functional form for the production frontier, and it is shown in simulated data to perform as well as flexible parametric models when correct distributional assumptions are imposed on the inefficiency component of the error term, and slightly better when incorrect assumptions are made. The technique is applied to a panel dataset of US electric utilities, where total-factor productivity growth is estimated and decomposed with both parametric and semi-parametric techniques.
Keywords: Gaussian process regression; stochastic frontier; total-factor productivity decomposition (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utz013 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:23:y:2020:i:1:p:48-67.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().