EconPapers    
Economics at your fingertips  
 

Higher-order income dynamics with linked regression trees

Jeppe Druedahl and Anders Munk-Nielsen

The Econometrics Journal, 2020, vol. 23, issue 3, S25-S58

Abstract: SummaryWe propose a novel method for modelling income processes using machine learning. Our method links age-specific regression trees, and returns a discrete state process, which can easily be included in consumption-saving models without further discretizations. A central advantage of our approach is that it does not rely on any parametric assumptions, and because we build on existing machine learning tools it is furthermore easy to apply in practice. Using a 30-year panel of Danish males, we document rich higher-order income dynamics, including substantial skewness and high kurtosis of income levels and growth rates. We also find important changes in income risk over the life-cycle and the income distribution. Our estimated process matches these dynamics closely. Using a consumption-saving model, the implied welfare cost of income risk is more than 10% of income.

Keywords: Income dynamics; higher-order income risk; consumption-saving; welfare cost of income risk; machine learning (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utaa026 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:23:y:2020:i:3:p:s25-s58.

Access Statistics for this article

The Econometrics Journal is currently edited by Jaap Abbring

More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:emjrnl:v:23:y:2020:i:3:p:s25-s58.