EconPapers    
Economics at your fingertips  
 

Comparing deep neural network and econometric approaches to predicting the impact of climate change on agricultural yield

Michael Keane () and Timothy Neal

The Econometrics Journal, 2020, vol. 23, issue 3, S59-S80

Abstract: SummaryPredicting the impact of climate change on crop yield is difficult, in part because the production function mapping weather to yield is high dimensional and nonlinear. We compare three approaches to predicting yields: (a) deep neural networks (DNNs), (b) traditional panel-data models, and (c) a new panel-data model that allows for unit and time fixed effects in both intercepts and slopes in the agricultural production function—made feasible by a new estimator called Mean Observation OLS (MO-OLS). Using U.S. county-level corn-yield data from 1950 to 2015, we show that both DNNs and MO-OLS models outperform traditional panel-data models for predicting yield, both in-sample and in a Monte Carlo cross-validation exercise. However, the MO-OLS model substantially outperforms both DNNs and traditional panel-data models in forecasting yield in a 2006–2015 holdout sample. We compare the predictions of all these models for climate change impacts on yields from 2016 to 2100.

Keywords: Climate change; crop yield; panel data; machine learning; deep learning (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utaa012 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Comparing Deep Neural Network and Econometric Approaches to Predicting the Impact of Climate Change on Agricultural Yield (2020) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:23:y:2020:i:3:p:s59-s80.

Access Statistics for this article

The Econometrics Journal is currently edited by Jaap Abbring

More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-22
Handle: RePEc:oup:emjrnl:v:23:y:2020:i:3:p:s59-s80.