Generalized Forecast Averaging in Autoregressions with a Near Unit Root
Mohitosh Kejriwal and
Xuewen Yu
The Econometrics Journal, 2021, vol. 24, issue 1, 83-102
Abstract:
SummaryThis paper develops a new approach to forecasting a highly persistent time series that employs feasible generalized least squares (FGLS) estimation of the deterministic components in conjunction with Mallows model averaging. Within a local-to-unity asymptotic framework, we derive analytical expressions for the asymptotic mean squared error and one-step-ahead mean squared forecast risk of the proposed estimator and show that the optimal FGLS weights are different from their ordinary least squares (OLS) counterparts. We also provide theoretical justification for a generalized Mallows averaging estimator that incorporates lag order uncertainty in the construction of the forecast. Monte Carlo simulations demonstrate that the proposed procedure yields a considerably lower finite-sample forecast risk relative to OLS averaging. An application to U.S. macroeconomic time series illustrates the efficacy of the advocated method in practice and finds that both persistence and lag order uncertainty have important implications for the accuracy of forecasts.
Keywords: Model averaging; local to unity; generalized least squares; forecast combination (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utaa006 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:24:y:2021:i:1:p:83-102.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().