Nonparametric panel data regression with parametric cross-sectional dependence
Alexandra Soberon,
Juan M Rodriguez-Poo and
Peter M Robinson
The Econometrics Journal, 2022, vol. 25, issue 1, 114-133
Abstract:
SummaryIn this paper, we consider efficiency improvement in a nonparametric panel data model with cross-sectional dependence. A generalised least squares (GLS)-type estimator is proposed by taking into account this dependence structure. Parameterising the cross-sectional dependence, a local linear estimator is shown to be dominated by this type of GLS estimator. Also, possible gains in terms of rate of convergence are studied. Asymptotically optimal bandwidth choice is justified. To assess the finite sample performance of the proposed estimators, a Monte Carlo study is carried out. Further, some empirical applications are conducted with the aim of analysing the implications of the European Monetary Union for its member countries.
Keywords: Local linear estimation; panel data; cross-sectional dependence; generalised least squares; optimal bandwidth; pseudo-maximum likelihood estimation (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utab016 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:25:y:2022:i:1:p:114-133.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().