Factor-augmented forecasting regressions with threshold effects
What drives oil prices? Emerging versus developed economies
Yayi Yan and
Tingting Cheng
The Econometrics Journal, 2022, vol. 25, issue 1, 134-154
Abstract:
SummaryThis paper introduces a factor-augmented forecasting regression model in the presence of threshold effects. We consider least squares estimation of the regression parameters and establish asymptotic theories for estimators of both slope coefficients and the threshold parameter. Prediction intervals are also constructed for factor-augmented forecasts. Moreover, we develop a likelihood ratio statistic for tests on the threshold parameter and a sup-Wald test statistic for tests on the presence of threshold effects, respectively. Simulation results show that the proposed estimation method and testing procedures work very well in finite samples. Finally, we demonstrate the usefulness of the proposed model through an application to forecasting stock market returns.
Keywords: Factor-augmented regression; forecasting error; likelihood ratio statistic; threshold parameter (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utab011 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:25:y:2022:i:1:p:134-154.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().