Estimation of nonstationary nonparametric regression model with multiplicative structure
Income and wealth distribution in macroeconomics: A continuous-time approach
Likai Chen,
Ekaterina Smetanina and
Wei Biao Wu
The Econometrics Journal, 2022, vol. 25, issue 1, 176-214
Abstract:
SummaryThis paper presents a multiplicative nonstationary nonparametric regression model which allows for a broad class of nonstationary processes. We propose a three-step estimation procedure to uncover the conditional mean function and establish uniform convergence rates and asymptotic normality of our estimators. The new model can also be seen as a dimension-reduction technique for a general two-dimensional time-varying nonparametric regression model, which is especially useful in small samples and for estimating explicitly multiplicative structural models. We consider two applications: estimating a pricing equation for the US aggregate economy to model consumption growth and estimating the shape of the monthly risk premium for S&P 500 Index data.
Keywords: Nonparametric regression; functional dependence measure; risk premium; consumption growth (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utab018 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:25:y:2022:i:1:p:176-214.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().