EconPapers    
Economics at your fingertips  
 

Explicit minimal representation of variance matrices, and its implication for dynamic volatility models

Karim M Abadir

The Econometrics Journal, 2023, vol. 26, issue 1, 88-104

Abstract: SummaryWe propose a minimal representation of variance matrices of dimension k, where parameterization and positive-definiteness conditions are both explicit. Then we apply it to the specification of dynamic multivariate volatility processes. Compared to the most parsimonious unrestricted formulation currently available, the required number of covariance parameters (hence processes) is reduced by about a half, which makes them estimable in full parametric generality if needed. Our conditions are easy to implement: there are only k of them, and they are explicit and univariate. To illustrate, we forecast minimum-variance portfolios and show that risk is always reduced (by a factor of 2 to 3 in spite of us using the simplest dynamics) compared to the standard benchmark used in finance, while also improving returns on the investment. Because of our representation, we do not get the usual dimensionality problems of existing unrestricted models, and the performance relative to the benchmark is actually improved substantially as k increases.

Keywords: Dynamic volatility models; auto-regressive conditional heteroskedasticity (ARCH); stochastic volatility; generalized auto-regressive score (GAS); orthogonal matrix representation; skew-symmetry; matrix exponential; minimum-variance portfolios in finance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utac023 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:26:y:2023:i:1:p:88-104.

Access Statistics for this article

The Econometrics Journal is currently edited by Jaap Abbring

More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:emjrnl:v:26:y:2023:i:1:p:88-104.