Simple approaches to nonlinear difference-in-differences with panel data
Jeffrey Wooldridge
The Econometrics Journal, 2023, vol. 26, issue 3, C31-C66
Abstract:
SummaryI derive simple, flexible strategies for difference-in-differences settings where the nature of the response variable may warrant a nonlinear model. I allow for general staggered interventions, with and without covariates. Under an index version of parallel trends, I show that average treatment effects on the treated (ATTs) are identified for each cohort and calendar time period in which a cohort was subjected to the intervention. The pooled quasi-maximum likelihood estimators in the linear exponential family extend pooled ordinary least squares estimation of linear models. By using the conditional mean associated with the canonical link function, imputation and pooling across the entire sample produce identical estimates. Generally, pooled estimation results in very simple computation of the ATTs and their standard errors. The leading cases are a logit functional form for binary and fractional outcomes—combined with the Bernoulli quasi-log likelihood (QLL)—and an exponential mean combined with the Poisson QLL.
Keywords: Difference-in-differences; staggered intervention; nonlinear model; logit model; Poisson regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utad016 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:26:y:2023:i:3:p:c31-c66.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().