Semiparametric Estimation of Regression Models for Panel Data
Joel L. Horowitz and
Marianthi Markatou
The Review of Economic Studies, 1996, vol. 63, issue 1, 145-168
Abstract:
Linear models with error components are widely used to analyse panel data. Some applications of these models require knowledge of the probability densities of the error components. Existing methods handle this requirement by assuming that the densities belong to known parametric families of distributions (typically the normal distribution). This paper shows how to carry out nonparametric estimation of the densities of the error components, thereby avoiding the assumption that the densities belong to known parametric families. The nonparametric estimators are applied to an earnings model using data from the Current Population Survey. The model's transitory error component is not normally distributed. Use of the nonparametric density estimators yields estimates of the probability that individuals with low earnings will become high earners in the future that are much lower than the estimates obtained under the assumption of normally distributed error components.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (103)
Downloads: (external link)
http://hdl.handle.net/10.2307/2298119 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:restud:v:63:y:1996:i:1:p:145-168.
Access Statistics for this article
The Review of Economic Studies is currently edited by Thomas Chaney, Xavier d’Haultfoeuille, Andrea Galeotti, Bård Harstad, Nir Jaimovich, Katrine Loken, Elias Papaioannou, Vincent Sterk and Noam Yuchtman
More articles in The Review of Economic Studies from Review of Economic Studies Ltd
Bibliographic data for series maintained by Oxford University Press ().