EconPapers    
Economics at your fingertips  
 

A Bias Bound Approach to Non-parametric Inference

Susanne Schennach

The Review of Economic Studies, 2020, vol. 87, issue 5, 2439-2472

Abstract: The traditional approach to obtain valid confidence intervals for non-parametric quantities is to select a smoothing parameter such that the bias of the estimator is negligible relative to its standard deviation. While this approach is apparently simple, it has two drawbacks: first, the question of optimal bandwidth selection is no longer well-defined, as it is not clear what ratio of bias to standard deviation should be considered negligible. Second, since the bandwidth choice necessarily deviates from the optimal (mean squares-minimizing) bandwidth, such a confidence interval is very inefficient. To address these issues, we construct valid confidence intervals that account for the presence of a non-negligible bias and thus make it possible to perform inference with optimal mean squared error minimizing bandwidths. The key difficulty in achieving this involves finding a strict, yet feasible, bound on the bias of a non-parametric estimator. It is well-known that it is not possible to consistently estimate the pointwise bias of an optimal non-parametric estimator (for otherwise, one could subtract it and obtain a faster convergence rate violating Stone’s bounds on the optimal convergence rates). Nevertheless, we find that, under minimal primitive assumptions, it is possible to consistently estimate an upper bound on the magnitude of the bias, which is sufficient to deliver a valid confidence interval whose length decreases at the optimal rate and which does not contradict Stone’s results.

Keywords: Fourier transform; Adaptive estimation; Kernel estimator; Dynamical system; C14; C01; C18 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1093/restud/rdz065 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
Working Paper: A bias bound approach to nonparametric inference (2015) Downloads
Working Paper: A bias bound approach to nonparametric inference (2015) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:restud:v:87:y:2020:i:5:p:2439-2472.

Access Statistics for this article

The Review of Economic Studies is currently edited by Thomas Chaney, Xavier d’Haultfoeuille, Andrea Galeotti, Bård Harstad, Nir Jaimovich, Katrine Loken, Elias Papaioannou, Vincent Sterk and Noam Yuchtman

More articles in The Review of Economic Studies from Review of Economic Studies Ltd
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-22
Handle: RePEc:oup:restud:v:87:y:2020:i:5:p:2439-2472.