Language and Domain Specificity: A Chinese Financial Sentiment Dictionary*
The effects of analyst-country institutions on biased research: Evidence from target prices
Zijia Du,
Alan Guoming Huang,
Russ Wermers and
Wenfeng Wu
Review of Finance, 2022, vol. 26, issue 3, 673-719
Abstract:
We use Word2vec to develop a financial sentiment dictionary from 3.1 million Chinese-language financial news articles. Our dictionary maps semantically similar words to a subset of human-expert generated financial sentiment words. In validation tests, our dictionary scores the sentiment of articles consistently with human reading of full articles. In return association tests, our dictionary outperforms and subsumes previous Chinese financial sentiment dictionaries, such as direct translations of Loughran and McDonald’s (2011, Journal of Finance, 66, 35–65) English-language financial dictionary. We also generate a list of politically related positive words that is unique to China; we find that this list has a weaker association with returns than does the list of other positive words. We demonstrate that state media uses more politically related positive and fewer negative words, and exhibits a sentiment bias. This bias renders the state media’s sentiment as less return-informative. Our findings demonstrate that dictionary-based sentiment analysis exhibits strong language and domain specificity.
Keywords: Financial word dictionary; Chinese; Sentiment analysis; Political words; Financial news (search for similar items in EconPapers)
JEL-codes: G10 G12 G14 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1093/rof/rfab036 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:revfin:v:26:y:2022:i:3:p:673-719.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Review of Finance is currently edited by Marcin Kacperczyk
More articles in Review of Finance from European Finance Association Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().