Estimating the Dynamics of Mutual Fund Alphas and Betas
Harry Mamaysky,
Matthew Spiegel and
Hong Zhang
The Review of Financial Studies, 2008, vol. 21, issue 1, 233-264
Abstract:
This article develops a Kalman filter model to track dynamic mutual fund factor loadings. It then uses the estimates to analyze whether managers with market-timing ability can be identified ex ante. The primary findings are as follows: (i) Ordinary least squares (OLS) timing models produce false positives (nonzero alphas) at too high a rate with either daily or monthly data. In contrast, the Kalman filter model produces them at approximately the correct rate with monthly data; (ii) In monthly data, though the OLS models fail to detect any timing among fund managers, the Kalman filter does; (iii) The alpha and beta forecasts from the Kalman model are more accurate than those from the OLS timing models; (iv) The Kalman filter model tracks most fund alphas and betas better than OLS models that employ macroeconomic variables in addition to fund returns. The Author 2007. Published by Oxford University Press on behalf of The Society for Financial Studies., Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (82)
Downloads: (external link)
http://hdl.handle.net/10.1093/rfs/hhm049 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:rfinst:v:21:y:2008:i:1:p:233-264
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
The Review of Financial Studies is currently edited by Itay Goldstein
More articles in The Review of Financial Studies from Society for Financial Studies Oxford University Press, Journals Department, 2001 Evans Road, Cary, NC 27513 USA.. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().