News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons
Xilong Chen and
Eric Ghysels
The Review of Financial Studies, 2011, vol. 24, issue 1, 46-81
Abstract:
We introduce a new class of parametric models applicable to a mixture of high and low frequency returns and revisit the concept of news impact curves introduced by Engle and Ng (1993). Overall, we find that moderately good (intra-daily) news reduces volatility (the next day), while both very good news (unusual high intra-daily positive returns) and bad news (negative returns) increase volatility, with the latter having a more severe impact. The asymmetries disappear over longer horizons. Models featuring asymmetries dominate in terms of out-of-sample forecasting performance, especially during the 2007--2008 financial crisis. The Author 2010. Published by Oxford University Press on behalf of The Society for Financial Studies. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org., Oxford University Press.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (108)
Downloads: (external link)
http://hdl.handle.net/10.1093/rfs/hhq071 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:rfinst:v:24:y:2011:i:1:p:46-81
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
The Review of Financial Studies is currently edited by Itay Goldstein
More articles in The Review of Financial Studies from Society for Financial Studies Oxford University Press, Journals Department, 2001 Evans Road, Cary, NC 27513 USA.. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().