Lest We Forget: Learn from Out-of-Sample Forecast Errors When Optimizing Portfolios
Pedro Barroso and
Konark Saxena
The Review of Financial Studies, 2022, vol. 35, issue 3, 1222-1278
Abstract:
Portfolio optimization often struggles in realistic out-of-sample contexts. We deconstruct this stylized fact by comparing historical forecasts of portfolio optimization inputs with subsequent out-of-sample values. We confirm that historical forecasts are imprecise guides of subsequent values, but we discover the resultant forecast errors are not entirely random. They have predictable patterns and can be partially reduced using their own history. Learning from past forecast errors to calibrate inputs (akin to empirical Bayesian learning) generates portfolio performance that reinforces the case for optimization. Furthermore, the portfolios achieve performance that meets expectations, a desirable yet elusive feature of optimization methods.
JEL-codes: G11 G12 G17 (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/rfs/hhab041 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:rfinst:v:35:y:2022:i:3:p:1222-1278.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
The Review of Financial Studies is currently edited by Itay Goldstein
More articles in The Review of Financial Studies from Society for Financial Studies Oxford University Press, Journals Department, 2001 Evans Road, Cary, NC 27513 USA.. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().