Simple Binomial Processes as Diffusion Approximations in Financial Models
Daniel B Nelson and
Krishna Ramaswamy ()
The Review of Financial Studies, 1990, vol. 3, issue 3, 393-430
Abstract:
A binomial approximation to a diffusion is defined as " computationally simple" if the number of nodes grows at most linearly in the number of time intervals. It is shown how to construct computationally simple binomial processes that converge weakly to commonly employed diffusions in financial models. The convergence of the sequence of bond and European option prices from these processes to the corresponding values in the diffusion limit is also demonstrated. Numerical examples from the constant elasticity of variance stock price and the Cox, Ingersoll, and Ross (1985) discount bond price are provided. Article published by Oxford University Press on behalf of the Society for Financial Studies in its journal, The Review of Financial Studies.
Date: 1990
References: Add references at CitEc
Citations: View citations in EconPapers (110)
Downloads: (external link)
http://www.jstor.org/fcgi-bin/jstor/listjournal.fcg/08939454 full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:rfinst:v:3:y:1990:i:3:p:393-430
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
The Review of Financial Studies is currently edited by Itay Goldstein
More articles in The Review of Financial Studies from Society for Financial Studies Oxford University Press, Journals Department, 2001 Evans Road, Cary, NC 27513 USA.. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().