Option Pricing with Differential Interest Rates
Yaacov Z Bergman
The Review of Financial Studies, 1995, vol. 8, issue 2, 475-500
Abstract:
The classic option pricing model is generalized to a more realistic, imperfect, dynamically incomplete capital market with different interest rates for borrowing and for lending and a return differential between long and short positions in stock. It is found that, in the absence of arbitrage opportunities, the equilibrium price of any contingent claim must lie within an arbitrage-band. The boundaries of an arbitrage-band are computed as solutions to a quasi-linear partial differential equation, and, in generals each end-point of such a band depends on both interest rates for borrowing and for lending. This, in turn, implies that the vector of concurrent equilibrium prices of different contingent claims - even claims that are written on different underlying assets - must lie within a computable arbitrage-oval in the price space. Article published by Oxford University Press on behalf of the Society for Financial Studies in its journal, The Review of Financial Studies.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (41)
Downloads: (external link)
http://www.jstor.org/fcgi-bin/jstor/listjournal.fcg/08939454 full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:rfinst:v:8:y:1995:i:2:p:475-500
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
The Review of Financial Studies is currently edited by Itay Goldstein
More articles in The Review of Financial Studies from Society for Financial Studies Oxford University Press, Journals Department, 2001 Evans Road, Cary, NC 27513 USA.. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().