EconPapers    
Economics at your fingertips  
 

Hey ChatGPT: an examination of ChatGPT prompts in marketing

Wondwesen Tafesse () and Bronwyn Wood ()
Additional contact information
Wondwesen Tafesse: United Arab Emirates University
Bronwyn Wood: United Arab Emirates University

Journal of Marketing Analytics, 2024, vol. 12, issue 4, No 5, 790-805

Abstract: Abstract Marketing is one of the areas where large language models (LLMs) such as ChatGPT have found practical applications. This study examines marketing prompts—text inputs created by marketers to guide LLMs in generating desired outputs. By combining insights from the marketing literature and the latest research on LLMs, the study develops a conceptual framework around three key features of marketing prompts: prompt domain (the specific marketing actions that the prompts target), prompt appeal (the intended output of the prompts being informative or emotional), and prompt format (the intended output of the prompts being generic or contextual). The study collected hundreds of marketing prompt templates shared on X (formerly Twitter) and analyzed them using a combination of natural language processing techniques and descriptive statistics. The findings indicate that the prompt templates target a wide range of marketing domains—about 16 altogether. Likewise, the findings indicate that most of the marketing prompts are designed to generate informative output (as opposed to emotionally engaging output). Further, the findings indicate that the marketing prompts are designed to generate a balanced mix of generic and contextual output. The study further finds that the use of prompt appeal and prompt format differs by prompt domain.

Keywords: Large language models; Business; Prompt engineering; Artificial intelligence; AI (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1057/s41270-023-00284-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:jmarka:v:12:y:2024:i:4:d:10.1057_s41270-023-00284-w

Ordering information: This journal article can be ordered from
http://www.springer. ... gement/journal/41270

DOI: 10.1057/s41270-023-00284-w

Access Statistics for this article

Journal of Marketing Analytics is currently edited by Maria Petrescu and Anjala Krishnen

More articles in Journal of Marketing Analytics from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:jmarka:v:12:y:2024:i:4:d:10.1057_s41270-023-00284-w