Inferring on the Intentions of Others by Hierarchical Bayesian Learning
Andreea O Diaconescu,
Christoph Mathys,
Lilian A E Weber,
Jean Daunizeau,
Lars Kasper,
Ekaterina I Lomakina,
Ernst Fehr and
Klaas E Stephan
PLOS Computational Biology, 2014, vol. 10, issue 9, 1-19
Abstract:
Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to “player” or “adviser” roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.Author Summary: The ability to decode another person's intentions is a critical component of social interactions. This is particularly important when we have to make decisions based on someone else's advice. Our research proposes that this complex cognitive skill (social learning) can be translated into a mathematical model, which prescribes a mechanism for mentally simulating another person's intentions. This study demonstrates that this process can be parsimoniously described as the deployment of hierarchical learning. In other words, participants learn about two quantities: the intentions of the person they interact with and the veracity of the recommendations they offer. As participants become more and more confident about their representation of the other's intentions, they make decisions more in accordance with the advice they receive. Importantly, our modeling framework captures individual differences in the social learning process: The estimated “learning fingerprint” can predict other aspects of participants' behavior, such as their perspective-taking abilities and their explicit ratings of the adviser's level of trustworthiness. The present modeling approach can be further applied in the context of psychiatry to identify maladaptive learning processes in disorders where social learning processes are particularly impaired, such as schizophrenia.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003810 (text/html)
https://journals.plos.org/ploscompbiol/article/fil ... 03810&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pcbi00:1003810
DOI: 10.1371/journal.pcbi.1003810
Access Statistics for this article
More articles in PLOS Computational Biology from Public Library of Science
Bibliographic data for series maintained by ploscompbiol ().