Artificial intelligence in fracture detection with different image modalities and data types: A systematic review and meta-analysis
Jongyun Jung,
Jingyuan Dai,
Bowen Liu and
Qing Wu
PLOS Digital Health, 2024, vol. 3, issue 1, 1-22
Abstract:
Artificial Intelligence (AI), encompassing Machine Learning and Deep Learning, has increasingly been applied to fracture detection using diverse imaging modalities and data types. This systematic review and meta-analysis aimed to assess the efficacy of AI in detecting fractures through various imaging modalities and data types (image, tabular, or both) and to synthesize the existing evidence related to AI-based fracture detection. Peer-reviewed studies developing and validating AI for fracture detection were identified through searches in multiple electronic databases without time limitations. A hierarchical meta-analysis model was used to calculate pooled sensitivity and specificity. A diagnostic accuracy quality assessment was performed to evaluate bias and applicability. Of the 66 eligible studies, 54 identified fractures using imaging-related data, nine using tabular data, and three using both. Vertebral fractures were the most common outcome (n = 20), followed by hip fractures (n = 18). Hip fractures exhibited the highest pooled sensitivity (92%; 95% CI: 87–96, p
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000438 (text/html)
https://journals.plos.org/digitalhealth/article/fi ... 00438&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pdig00:0000438
DOI: 10.1371/journal.pdig.0000438
Access Statistics for this article
More articles in PLOS Digital Health from Public Library of Science
Bibliographic data for series maintained by digitalhealth ().