EconPapers    
Economics at your fingertips  
 

Real-world patterns in remote longitudinal study participation: A study of the Swiss Multiple Sclerosis Registry

Paola Daniore, Chuqiao Yan, Mina Stanikic, Stefania Iaquinto, Sabin Ammann, Christian P Kamm, Chiara Zecca, Pasquale Calabrese, Nina Steinemann and Viktor von Wyl

PLOS Digital Health, 2024, vol. 3, issue 11, 1-18

Abstract: Remote longitudinal studies are on the rise and promise to increase reach and reduce participation barriers in chronic disease research. However, maintaining long-term retention in these studies remains challenging. Early identification of participants with different patterns of long-term retention offers the opportunity for tailored survey adaptations. Using data from the online arm of the Swiss Multiple Sclerosis Registry (SMSR), we assessed sociodemographic, health-related, and daily-life related baseline variables against measures of long-term retention in the follow-up surveys through multivariable logistic regressions and unsupervised clustering analyses. We further explored follow-up survey completion measures against survey requirements to inform future survey designs. Our analysis included data from 1,757 participants who completed a median of 4 (IQR 2–8) follow-up surveys after baseline with a maximum of 13 possible surveys. Survey start year, age, citizenship, MS type, symptom burden and independent driving were significant predictors of long-term retention at baseline. Three clusters of participants emerged, with no differences in long-term retention outcomes revealed across the clusters. Exploratory assessments of follow-up surveys suggest possible trends in increased survey complexity with lower rates of survey completion. Our findings offer insights into characteristics associated with long-term retention in remote longitudinal studies, yet they also highlight the possible influence of various unexplored factors on retention outcomes. Future studies should incorporate additional objective measures that reflect participants’ individual contexts to understand their ability to remain engaged long-term and inform survey adaptations accordingly.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000645 (text/html)
https://journals.plos.org/digitalhealth/article/fi ... 00645&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pdig00:0000645

DOI: 10.1371/journal.pdig.0000645

Access Statistics for this article

More articles in PLOS Digital Health from Public Library of Science
Bibliographic data for series maintained by digitalhealth ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pdig00:0000645