Confounding from Cryptic Relatedness in Case-Control Association Studies
Benjamin F Voight and
Jonathan K Pritchard
PLOS Genetics, 2005, vol. 1, issue 3, 1-
Abstract:
Case-control association studies are widely used in the search for genetic variants that contribute to human diseases. It has long been known that such studies may suffer from high rates of false positives if there is unrecognized population structure. It is perhaps less widely appreciated that so-called “cryptic relatedness” (i.e., kinship among the cases or controls that is not known to the investigator) might also potentially inflate the false positive rate. Until now there has been little work to assess how serious this problem is likely to be in practice. In this paper, we develop a formal model of cryptic relatedness, and study its impact on association studies. We provide simple expressions that predict the extent of confounding due to cryptic relatedness. Surprisingly, these expressions are functions of directly observable parameters. Our analytical results show that, for well-designed studies in outbred populations, the degree of confounding due to cryptic relatedness will usually be negligible. However, in contrast, studies where there is a sampling bias toward collecting relatives may indeed suffer from excessive rates of false positives. Furthermore, cryptic relatedness may be a serious concern in founder populations that have grown rapidly and recently from a small size. As an example, we analyze the impact of excess relatedness among cases for six phenotypes measured in the Hutterite population.: There has long been concern in the human genetics community that case-control association studies may be subject to high rates of false positives if there is unrecognized population structure. After being considered rather suspect in the 1990s for this reason, case-control studies are regaining popularity, and will no doubt be used widely in future genome-wide association studies.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0010032 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 10032&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:0010032
DOI: 10.1371/journal.pgen.0010032
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().