Linkage Analysis of a Model Quantitative Trait in Humans: Finger Ridge Count Shows Significant Multivariate Linkage to 5q14.1
Sarah E Medland,
Danuta Z Loesch,
Bogdan Mdzewski,
Gu Zhu,
Grant W Montgomery and
Nicholas G Martin
PLOS Genetics, 2007, vol. 3, issue 9, 1-9
Abstract:
The finger ridge count (a measure of pattern size) is one of the most heritable complex traits studied in humans and has been considered a model human polygenic trait in quantitative genetic analysis. Here, we report the results of the first genome-wide linkage scan for finger ridge count in a sample of 2,114 offspring from 922 nuclear families. Both univariate linkage to the absolute ridge count (a sum of all the ridge counts on all ten fingers), and multivariate linkage analyses of the counts on individual fingers, were conducted. The multivariate analyses yielded significant linkage to 5q14.1 (Logarithm of odds [LOD] = 3.34, pointwise-empirical p-value = 0.00025) that was predominantly driven by linkage to the ring, index, and middle fingers. The strongest univariate linkage was to 1q42.2 (LOD = 2.04, point-wise p-value = 0.002, genome-wide p-value = 0.29). In summary, the combination of univariate and multivariate results was more informative than simple univariate analyses alone. Patterns of quantitative trait loci factor loadings consistent with developmental fields were observed, and the simple pleiotropic model underlying the absolute ridge count was not sufficient to characterize the interrelationships between the ridge counts of individual fingers. : Finger ridge count (an index of the size of the fingerprint pattern) has been used as a model trait for the study of human quantitative genetics for over 80 years. Here, we present the first genome-wide linkage scan for finger ridge count in a large sample of 2,114 offspring from 922 nuclear families. Our results illustrate the increase in power and information that can be gained from a multivariate linkage analysis of ridge counts of individual fingers as compared to a univariate analysis of a summary measure (absolute ridge count). The strongest evidence for linkage was seen at 5q14.1, and the pattern of loadings was consistent with a developmental field factor whose influence is greatest on the ring finger, falling off to either side, which is consistent with previous findings that heritability for ridge count is higher for the middle three fingers. We feel that the paper will be of specific methodological interest to those conducting linkage and association analyses with summary measures. In addition, given the frequency with which this phenotype is used as a didactic example in genetics courses we feel that this paper will be of interest to the general scientific community.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0030165 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 30165&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:0030165
DOI: 10.1371/journal.pgen.0030165
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().