EconPapers    
Economics at your fingertips  
 

Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines

Edwin Choy, Roman Yelensky, Sasha Bonakdar, Robert M Plenge, Richa Saxena, Philip L De Jager, Stanley Y Shaw, Cara S Wolfish, Jacqueline M Slavik, Chris Cotsapas, Manuel Rivas, Emmanouil T Dermitzakis, Ellen Cahir-McFarland, Elliott Kieff, David Hafler, Mark J Daly and David Altshuler

PLOS Genetics, 2008, vol. 4, issue 11, 1-16

Abstract: Lymphoblastoid cell lines (LCLs), originally collected as renewable sources of DNA, are now being used as a model system to study genotype–phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-individual variance—i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels) than to detectable eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro artifacts may reduce power and have the potential to create spurious association due to confounding.Author Summary: The use of lymphoblastoid cell lines (LCLs) has evolved from a renewable source of DNA to an in vitro model system to study the genetics of gene expression, drug response, and other traits in a controlled laboratory setting. While convincing relationships between SNPs and mRNA levels (eQTLs) have been described, the degree to which non-genetic variables also influence phenotypes in LCLs is less well characterized. In the course of attempting to map genes for drug responses in vitro, we evaluated the reproducibility of in vitro traits across replicates, the impact of the EBV virus used to transform B cells into cell lines, and the effect of in vitro culture conditions. We found that responses to at least some drugs and levels of many mRNAs can be technically well measured, but vary both across experiments and with non-genetic confounders such as growth rates, EBV levels, and ATP levels. The influence of such non-genetic factors can both decrease power to detect true relationships between DNA variation and traits and create the potential for non-genetic confounding and spurious associations between DNA variants and traits.

Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000287 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00287&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000287

DOI: 10.1371/journal.pgen.1000287

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pgen00:1000287