EconPapers    
Economics at your fingertips  
 

Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions

Soumya Raychaudhuri, Robert M Plenge, Elizabeth J Rossin, Aylwin C Y Ng, International Schizophrenia Consortium, Shaun M Purcell, Pamela Sklar, Edward M Scolnick, Ramnik J Xavier, David Altshuler and Mark J Daly

PLOS Genetics, 2009, vol. 5, issue 6, 1-15

Abstract: Translating a set of disease regions into insight about pathogenic mechanisms requires not only the ability to identify the key disease genes within them, but also the biological relationships among those key genes. Here we describe a statistical method, Gene Relationships Among Implicated Loci (GRAIL), that takes a list of disease regions and automatically assesses the degree of relatedness of implicated genes using 250,000 PubMed abstracts. We first evaluated GRAIL by assessing its ability to identify subsets of highly related genes in common pathways from validated lipid and height SNP associations from recent genome-wide studies. We then tested GRAIL, by assessing its ability to separate true disease regions from many false positive disease regions in two separate practical applications in human genetics. First, we took 74 nominally associated Crohn's disease SNPs and applied GRAIL to identify a subset of 13 SNPs with highly related genes. Of these, ten convincingly validated in follow-up genotyping; genotyping results for the remaining three were inconclusive. Next, we applied GRAIL to 165 rare deletion events seen in schizophrenia cases (less than one-third of which are contributing to disease risk). We demonstrate that GRAIL is able to identify a subset of 16 deletions containing highly related genes; many of these genes are expressed in the central nervous system and play a role in neuronal synapses. GRAIL offers a statistically robust approach to identifying functionally related genes from across multiple disease regions—that likely represent key disease pathways. An online version of this method is available for public use (http://www.broad.mit.edu/mpg/grail/).Author Summary: Modern genetic studies, including genome-wide surveys for disease-associated loci and copy number variation, provide a list of critical genomic regions that play an important role in predisposition to disease. Using these regions to understand disease pathogenesis requires the ability to first distinguish causal genes from other nearby genes spuriously contained within these regions. To do this we must identify the key pathways suggested by those causal genes. In this manuscript we describe a statistical approach, Gene Relationships Across Implicated Loci (GRAIL), to achieve this task. It starts with genomic regions and identifies related subsets of genes involved in similar biological processes—these genes highlight the likely causal genes and the key pathways. GRAIL uses abstracts from the entirety of the published scientific literature about the genes to look for potential relationships between genes. We apply GRAIL to four very different phenotypes. In each case we identify a subset of highly related genes; in cases where false positive regions are present, GRAIL is able to separate out likely true positives. GRAIL therefore offers the potential to translate disease genomic regions from unbiased genomic surveys into the key processes that may be critical to the disease.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000534 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00534&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000534

DOI: 10.1371/journal.pgen.1000534

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1000534