Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling
Srivathsa C Venugopal,
Rae-Dong Jeong,
Mihir K Mandal,
Shifeng Zhu,
A C Chandra-Shekara,
Ye Xia,
Matthew Hersh,
Arnold J Stromberg,
DuRoy Navarre,
Aardra Kachroo and
Pradeep Kachroo
PLOS Genetics, 2009, vol. 5, issue 7, 1-18
Abstract:
Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA–synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.Author Summary: Salicylic acid and enhanced disease susceptibility 1 are important components of resistance gene-mediated defense signaling against diverse pathogens in a variety of plants. Present understanding of plant defense signaling pathways places salicylic acid and enhanced disease susceptibility 1 downstream of resistant protein activation. In addition, enhanced disease susceptibility 1 is primarily thought to function in the signaling initiated via Toll-interleukin 1-receptor type of resistance proteins. Here, we show that salicylic acid and enhanced disease susceptibility 1 serve redundant functions in defense signaling mediated by coiled-coil-domain containing resistance proteins that were thought to function independent of enhanced disease susceptibility 1. Furthermore, resistance signaling induced under low oleic acid conditions also requires enhanced disease susceptibility 1 and salicylic acid in a redundant manner, but these components are required upstream of resistance gene expression. Together, these results show that the functional redundancy between salicylic acid and enhanced disease susceptibility 1 has precluded their detection as required components of many resistance protein–signaling pathways.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000545 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00545&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000545
DOI: 10.1371/journal.pgen.1000545
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().