Statistical Power of Model Selection Strategies for Genome-Wide Association Studies
Zheyang Wu and
Hongyu Zhao
PLOS Genetics, 2009, vol. 5, issue 7, 1-14
Abstract:
Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the Comprehensive R Archive Network (CRAN) or http://bioinformatics.med.yale.edu/group/.Author Summary: Almost all published genome-wide association studies are based on single-marker analysis. Intuitively, joint consideration of multiple markers should be more informative when multiple genes and their interactions are involved in disease etiology. For example, an exhaustive search among models involving multiple markers and their interactions can identify certain gene–gene interactions that will be missed by single-marker analysis. However, an exhaustive search is difficult, or even impossible, to perform because of the computational requirements. Moreover, searching more models does not necessarily increase statistical power, because there may be an increased chance of finding false positive results when more models are explored. For power comparisons of different model selection methods, the published studies have relied on limited simulations due to the highly computationally intensive nature of such simulation studies. To enable researchers to compare different model search strategies without resorting to extensive simulations, we develop a novel analytical approach to evaluating the statistical power of these methods. Our results offer insights into how different parameters in a genetic model affect the statistical power of a given model selection strategy. We developed an R package to implement our results. This package can be used by researchers to compare and select an effective approach to detecting SNPs.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000582 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00582&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000582
DOI: 10.1371/journal.pgen.1000582
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().