EconPapers    
Economics at your fingertips  
 

Genetic Crossovers Are Predicted Accurately by the Computed Human Recombination Map

Pavel P Khil and R Daniel Camerini-Otero

PLOS Genetics, 2010, vol. 6, issue 1, 1-11

Abstract: Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers. We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in other populations. In summary, we find that by combining several computed population-specific maps we can capture the variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers.Author Summary: In eukaryotes genetic crossovers are responsible for generating genetic diversity and ensuring the proper segregation of chromosomes. Genetic crossovers are tightly clustered in hotspots. Although the existence of hotspots in humans is clearly proven, mechanisms of their formation and the regulation of meiotic recombination in general remain poorly understood. An additional complication in studies of meiotic recombination is the fact that the direct experimental mapping of human hotspots on a genome-wide scale is not feasible with current methods. The best available indirect methods compute the position of hotspots from patterns of historic associations between genetic markers in population samples. In this study we determined the positions of genetic crossovers in ten pedigrees of European origin and then compared the positions of crossovers with the hotspots computed from HapMap data. Importantly, we find that the population-averaged computed map is in close agreement with the observed distribution of genetic crossovers. We also find that cryptic hotspots that are not easily detected in the computed European map can be more effectively identified if other populations are included in the analysis. Our analysis shows that high-resolution recombination profiles are highly similar between distantly related populations and that by including computed hotspots from several populations we can predict nearly all crossovers.

Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000831 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00831&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000831

DOI: 10.1371/journal.pgen.1000831

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1000831