EconPapers    
Economics at your fingertips  
 

Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle

Kazunari Kaizu, Hisao Moriya and Hiroaki Kitano

PLOS Genetics, 2010, vol. 6, issue 4, 1-12

Abstract: Cells can maintain their functions despite fluctuations in intracellular parameters, such as protein activities and gene expression levels. This commonly observed biological property of cells is called robustness. On the other hand, these parameters have different limitations, each reflecting the property of the subsystem containing the parameter. The budding yeast cell cycle is quite fragile upon overexpression of CDC14, but is robust upon overexpression of ESP1. The gene products of both CDC14 and ESP1 are regulated by 1∶1 binding with their inhibitors (Net1 and Pds1), and a mathematical model predicts the extreme fragility of the cell cycle upon overexpression of CDC14 and ESP1 caused by dosage imbalance between these genes. However, it has not been experimentally shown that dosage imbalance causes fragility of the cell cycle. In this study, we measured the quantitative genetic interactions of these genes by performing combinatorial “genetic tug-of-war” experiments. We first showed experimental evidence that dosage imbalance between CDC14 and NET1 causes fragility. We also showed that fragility arising from dosage imbalance between ESP1 and PDS1 is masked by CDH1 and CLB2. The masking function of CLB2 was stabilization of Pds1 by its phosphorylation. We finally modified Chen's model according to our findings. We thus propose that dosage imbalance causes fragility in biological systems.Author Summary: Normal cell functioning is dependent on balance between protein interactions and gene regulations. Although the balance is often perturbed by environmental changes, mutations, and noise in biochemical reactions, cellular systems can maintain their function despite these perturbations. This property of cells, called robustness, is now considered to be a design principle of biological systems and has become a central theme for systems biology. We previously developed an experimental method designated “genetic tug-of-war,” in which we assessed the robustness of cellular systems upon overexpression of certain genes, especially that of the budding yeast cell cycle. Although the yeast cell cycle can be maintained despite significant overexpression of most genes within the system, the cell cycle halts upon just two-fold overexpression of M phase phosphatase CDC14. In this study, we experimentally showed that this fragility is caused by dosage imbalance between CDC14 and NET1. Interestingly, fragility of regulation of separase gene ESP1, potentially caused by dosage imbalance, was masked by regulation of other factors such as CDH1 and CLB2. We thus propose that dosage imbalance causes fragility in biological systems.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000919 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00919&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000919

DOI: 10.1371/journal.pgen.1000919

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pgen00:1000919