EconPapers    
Economics at your fingertips  
 

Genetic Architecture of Complex Traits and Accuracy of Genomic Prediction: Coat Colour, Milk-Fat Percentage, and Type in Holstein Cattle as Contrasting Model Traits

Ben J Hayes, Jennie Pryce, Amanda J Chamberlain, Phil J Bowman and Mike E Goddard

PLOS Genetics, 2010, vol. 6, issue 9, 1-11

Abstract: Prediction of genetic merit using dense SNP genotypes can be used for estimation of breeding values for selection of livestock, crops, and forage species; for prediction of disease risk; and for forensics. The accuracy of these genomic predictions depends in part on the genetic architecture of the trait, in particular number of loci affecting the trait and distribution of their effects. Here we investigate the difference among three traits in distribution of effects and the consequences for the accuracy of genomic predictions. Proportion of black coat colour in Holstein cattle was used as one model complex trait. Three loci, KIT, MITF, and a locus on chromosome 8, together explain 24% of the variation of proportion of black. However, a surprisingly large number of loci of small effect are necessary to capture the remaining variation. A second trait, fat concentration in milk, had one locus of large effect and a host of loci with very small effects. Both these distributions of effects were in contrast to that for a third trait, an index of scores for a number of aspects of cow confirmation (“overall type”), which had only loci of small effect. The differences in distribution of effects among the three traits were quantified by estimating the distribution of variance explained by chromosome segments containing 50 SNPs. This approach was taken to account for the imperfect linkage disequilibrium between the SNPs and the QTL affecting the traits. We also show that the accuracy of predicting genetic values is higher for traits with a proportion of large effects (proportion black and fat percentage) than for a trait with no loci of large effect (overall type), provided the method of analysis takes advantage of the distribution of loci effects.Author Summary: Prediction of future phenotypes or genetic merit using high-density SNP chips can be used for prediction of disease risk in humans, for forensics, and for selection of livestock, crops, and forage species. Key questions are how accurately these predictions can be made and on what parameters does the accuracy depend. In this paper, we use three dairy cow traits—proportion of black on coat, fat percentage in milk, and overall type, which measures cow confirmation—to demonstrate the large differences among genetic architectures of complex traits. For example 24% of the genetic variance in proportion of black is determined by three loci, KIT, MITF, and a locus on chromosome 8; however a surprisingly large number of additional loci, all of small effect, are required to capture the remaining variation. For overall type, a very large number of loci are necessary to capture the same level of variance. We also show that the accuracy of predicting genetic values is higher for traits with a proportion of large effects (proportion black and fat percentage) than for a trait with no loci of large effect (overall type), provided the method of analysis takes advantage of the distribution of loci effects.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001139 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 01139&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1001139

DOI: 10.1371/journal.pgen.1001139

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1001139