A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions
Dajiang J Liu and
Suzanne M Leal
PLOS Genetics, 2010, vol. 6, issue 10, 1-14
Abstract:
There is solid evidence that rare variants contribute to complex disease etiology. Next-generation sequencing technologies make it possible to uncover rare variants within candidate genes, exomes, and genomes. Working in a novel framework, the kernel-based adaptive cluster (KBAC) was developed to perform powerful gene/locus based rare variant association testing. The KBAC combines variant classification and association testing in a coherent framework. Covariates can also be incorporated in the analysis to control for potential confounders including age, sex, and population substructure. To evaluate the power of KBAC: 1) variant data was simulated using rigorous population genetic models for both Europeans and Africans, with parameters estimated from sequence data, and 2) phenotypes were generated using models motivated by complex diseases including breast cancer and Hirschsprung's disease. It is demonstrated that the KBAC has superior power compared to other rare variant analysis methods, such as the combined multivariate and collapsing and weight sum statistic. In the presence of variant misclassification and gene interaction, association testing using KBAC is particularly advantageous. The KBAC method was also applied to test for associations, using sequence data from the Dallas Heart Study, between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were identified, including the associations of high density lipoprotein and very low density lipoprotein with ANGPTL4. The KBAC method is implemented in a user-friendly R package.Author Summary: It has been demonstrated that both rare and common variants are involved in complex disease etiology. Until recently it was only possible to perform large scale analysis of common variants. With the development of next-generation sequencing technologies, detection and mapping of rare variants have been made possible. However, methods used to analyze common variants are not powerful for the analysis of rare variants. To address the problems of rare variant analysis working in a novel framework, the kernel-based adaptive cluster (KBAC) method was developed to perform gene/locus based analysis. The KBAC combines variant classification and association testing in a coherent framework. Through simulations motivated by population genetic and disease data, it is demonstrated that the KBAC has superior power to other rare variant analysis methods, especially in the presence of variant misclassification and gene interaction. Using data from the Dallas Heart Study, the KBAC method was applied to test for associations between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were identified. The KBAC method is implemented in a user-friendly R package.
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001156 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 01156&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1001156
DOI: 10.1371/journal.pgen.1001156
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().