EconPapers    
Economics at your fingertips  
 

A Unifying Framework for Evaluating the Predictive Power of Genetic Variants Based on the Level of Heritability Explained

Hon-Cheong So and Pak C Sham

PLOS Genetics, 2010, vol. 6, issue 12, 1-13

Abstract: An increasing number of genetic variants have been identified for many complex diseases. However, it is controversial whether risk prediction based on genomic profiles will be useful clinically. Appropriate statistical measures to evaluate the performance of genetic risk prediction models are required. Previous studies have mainly focused on the use of the area under the receiver operating characteristic (ROC) curve, or AUC, to judge the predictive value of genetic tests. However, AUC has its limitations and should be complemented by other measures. In this study, we develop a novel unifying statistical framework that connects a large variety of predictive indices together. We showed that, given the overall disease probability and the level of variance in total liability (or heritability) explained by the genetic variants, we can estimate analytically a large variety of prediction metrics, for example the AUC, the mean risk difference between cases and non-cases, the net reclassification improvement (ability to reclassify people into high- and low-risk categories), the proportion of cases explained by a specific percentile of population at the highest risk, the variance of predicted risks, and the risk at any percentile. We also demonstrate how to construct graphs to visualize the performance of risk models, such as the ROC curve, the density of risks, and the predictiveness curve (disease risk plotted against risk percentile). The results from simulations match very well with our theoretical estimates. Finally we apply the methodology to nine complex diseases, evaluating the predictive power of genetic tests based on known susceptibility variants for each trait.Author Summary: Recently many genetic variants have been established for diseases, and the findings have raised hope for risk prediction based on genomic profiles. However, we need to have proper statistical measures to assess the usefulness of such tests. In this study, we developed a statistical framework which enables us to evaluate many predictive indices analytically. It is based on the liability threshold model, which postulates a latent liability that is normally distributed. Affected individuals are assumed to have a liability exceeding a certain threshold. We demonstrated that, given the overall disease probability and variance in liability explained by the genetic markers, we can compute a variety of predictive indices. An example is the area under the receiver operating characteristic (ROC) curve, or AUC, which is very commonly employed. However, the limitations of AUC are often ignored, and we proposed complementing it with other indices. We have therefore also computed other metrics like the average difference in risks between cases and non-cases, the ability of reclassification into high- and low-risk categories, and the proportion of cases accounted for by a certain percentile of population at the highest risk. We also derived how to construct graphs showing the risk distribution in population.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001230 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 01230&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1001230

DOI: 10.1371/journal.pgen.1001230

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1001230