A Population Genetic Approach to Mapping Neurological Disorder Genes Using Deep Resequencing
Rachel A Myers,
Ferran Casals,
Julie Gauthier,
Fadi F Hamdan,
Jon Keebler,
Adam R Boyko,
Carlos D Bustamante,
Amelie M Piton,
Dan Spiegelman,
Edouard Henrion,
Martine Zilversmit,
Julie Hussin,
Jacklyn Quinlan,
Yan Yang,
Ronald G Lafrenière,
Alexander R Griffing,
Eric A Stone,
Guy A Rouleau and
Philip Awadalla
PLOS Genetics, 2011, vol. 7, issue 2, 1-10
Abstract:
Deep resequencing of functional regions in human genomes is key to identifying potentially causal rare variants for complex disorders. Here, we present the results from a large-sample resequencing (n = 285 patients) study of candidate genes coupled with population genetics and statistical methods to identify rare variants associated with Autism Spectrum Disorder and Schizophrenia. Three genes, MAP1A, GRIN2B, and CACNA1F, were consistently identified by different methods as having significant excess of rare missense mutations in either one or both disease cohorts. In a broader context, we also found that the overall site frequency spectrum of variation in these cases is best explained by population models of both selection and complex demography rather than neutral models or models accounting for complex demography alone. Mutations in the three disease-associated genes explained much of the difference in the overall site frequency spectrum among the cases versus controls. This study demonstrates that genes associated with complex disorders can be mapped using resequencing and analytical methods with sample sizes far smaller than those required by genome-wide association studies. Additionally, our findings support the hypothesis that rare mutations account for a proportion of the phenotypic variance of these complex disorders.Author Summary: It is widely accepted that genetic factors play important roles in the etiology of neurological diseases. However, the nature of the underlying genetic variation remains unclear. Critical questions in the field of human genetics relate to the frequency and size effects of genetic variants associated with disease. For instance, the common disease–common variant model is based on the idea that sets of common variants explain a significant fraction of the variance found in common disease phenotypes. On the other hand, rare variants may have strong effects and therefore largely contribute to disease phenotypes. Due to their high penetrance and reduced fitness, such variants are maintained in the population at low frequencies, thus limiting their detection in genome-wide association studies. Here, we use a resequencing approach on a cohort of 285 Autism Spectrum Disorder and Schizophrenia patients and preformed several analyses, enhanced with population genetic approaches, to identify variants associated with both diseases. Our results demonstrate an excess of rare variants in these disease cohorts and identify genes with negative (deleterious) selection coefficients, suggesting an accumulation of variants of detrimental effects. Our results present further evidence for rare variants explaining a component of the genetic etiology of autism and schizophrenia.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001318 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 01318&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1001318
DOI: 10.1371/journal.pgen.1001318
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().