Incorporating Biological Pathways via a Markov Random Field Model in Genome-Wide Association Studies
Min Chen,
Judy Cho and
Hongyu Zhao
PLOS Genetics, 2011, vol. 7, issue 4, 1-13
Abstract:
Genome-wide association studies (GWAS) examine a large number of markers across the genome to identify associations between genetic variants and disease. Most published studies examine only single markers, which may be less informative than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways, most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a pathway. However, how genes are related with each other in a pathway may be very informative to identify association signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov Random Field (MRF) model to incorporate pathway topology for association analysis. We show that the conditional distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes algorithm as well as a decision theoretic approach for statistical inference of each gene's association with disease. Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a single gene–based method. We also illustrate the usefulness of our approach through its applications to a real data example.Author Summary: Statistical methods used in most GWAS are based on the analysis of single markers. Prior biological information about markers, genes, and pathways is not commonly incorporated in the detection of associated disease loci. Recently a number of methods have been developed to incorporate such information, and it has been shown that they may make use of prior biological knowledge in association analysis. However, most of these methods ignore the regulatory relationships and functional interactions among genes. In this article, we propose a statistical method that can explicitly model the interactions of genes in a neighborhood defined by the topology of a pathway. Simulation studies and a real data example show that the proposed method can improve the power of identifying associated genes when they are in the neighborhood of other genes whose association has been firmly established in previous studies.
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001353 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 01353&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1001353
DOI: 10.1371/journal.pgen.1001353
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().