An Assessment of the Individual and Collective Effects of Variants on Height Using Twins and a Developmentally Informative Study Design
Scott I Vrieze,
Matt McGue,
Michael B Miller,
Lisa N Legrand,
Nicholas J Schork and
William G Iacono
PLOS Genetics, 2011, vol. 7, issue 12, 1-10
Abstract:
In a sample of 3,187 twins and 3,294 of their parents, we sought to investigate association of both individual variants and a genotype-based height score involving 176 of the 180 common genetic variants with adult height identified recently by the GIANT consortium. First, longitudinal observations on height spanning pre-adolescence through adulthood in the twin sample allowed us to investigate the separate effects of the previously identified SNPs on pre-pubertal height and pubertal growth spurt. We show that the effect of SNPs identified by the GIANT consortium is primarily on prepubertal height. Only one SNP, rs7759938 in LIN28B, approached a significant association with pubertal growth. Second, we show how using the twin data to control statistically for environmental variance can provide insight into the ultimate magnitude of SNP effects and consequently the genetic architecture of a phenotype. Specifically, we computed a genetic score by weighting SNPs according to their effects as assessed via meta-analysis. This weighted score accounted for 9.2% of the phenotypic variance in height, but 14.3% of the corresponding genetic variance. Longitudinal samples will be needed to understand the developmental context of common genetic variants identified through GWAS, while genetically informative designs will be helpful in accurately characterizing the extent to which these variants account for genetic, and not just phenotypic, variance. Author Summary: We evaluated the developmental specificity of 176 SNPs known to affect adult height based on meta-analysis from the GIANT consortium. First, longitudinal observations on height spanning pre-adolescence through adulthood in a twin sample allowed us to investigate the individual effects of the previously identified SNPs on both pre-pubertal height and pubertal growth spurt. We show that the effect of the SNPs identified by the GIANT consortium is primarily on prepubertal height. Only one SNP, rs7759938 in LIN28B, approached a significant association with pubertal growth. Second, using standard twin heritability models, we investigated the extent to which the collective effect of these SNPs explained genetic variance in height—as opposed to phenotypic variance, as other studies have done. We computed a genetic score by weighting SNPs according to their effects as assessed via meta-analysis. We show that, while the score accounts for ∼9% of the phenotypic variance in height (i.e., the overall variance), it accounts for ∼14% of the corresponding genetic variance. Longitudinal samples are necessary to understand the developmental context of common genetic variants identified through GWAS, while twin samples will be helpful in accurately characterizing the extent to which these variants account for genetic, and not just phenotypic, variance.
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002413 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 02413&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1002413
DOI: 10.1371/journal.pgen.1002413
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().