EconPapers    
Economics at your fingertips  
 

A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation

Andrea D Coviello, Robin Haring, Melissa Wellons, Dhananjay Vaidya, Terho Lehtimäki, Sarah Keildson, Kathryn L Lunetta, Chunyan He, Myriam Fornage, Vasiliki Lagou, Massimo Mangino, N Charlotte Onland-Moret, Brian Chen, Joel Eriksson, Melissa Garcia, Yong Mei Liu, Annemarie Koster, Kurt Lohman, Leo-Pekka Lyytikäinen, Ann-Kristin Petersen, Jennifer Prescott, Lisette Stolk, Liesbeth Vandenput, Andrew R Wood, Wei Vivian Zhuang, Aimo Ruokonen, Anna-Liisa Hartikainen, Anneli Pouta, Stefania Bandinelli, Reiner Biffar, Georg Brabant, David G Cox, Yuhui Chen, Steven Cummings, Luigi Ferrucci, Marc J Gunter, Susan E Hankinson, Hannu Martikainen, Albert Hofman, Georg Homuth, Thomas Illig, John-Olov Jansson, Andrew D Johnson, David Karasik, Magnus Karlsson, Johannes Kettunen, Douglas P Kiel, Peter Kraft, Jingmin Liu, Östen Ljunggren, Mattias Lorentzon, Marcello Maggio, Marcello R P Markus, Dan Mellström, Iva Miljkovic, Daniel Mirel, Sarah Nelson, Laure Morin Papunen, Petra H M Peeters, Inga Prokopenko, Leslie Raffel, Martin Reincke, Alex P Reiner, Kathryn Rexrode, Fernando Rivadeneira, Stephen M Schwartz, David Siscovick, Nicole Soranzo, Doris Stöckl, Shelley Tworoger, André G Uitterlinden, Carla H van Gils, Ramachandran S Vasan, H-Erich Wichmann, Guangju Zhai, Shalender Bhasin, Martin Bidlingmaier, Stephen J Chanock, Immaculata De Vivo, Tamara B Harris, David J Hunter, Mika Kähönen, Simin Liu, Pamela Ouyang, Tim D Spector, Yvonne T van der Schouw, Jorma Viikari, Henri Wallaschofski, Mark I McCarthy, Timothy M Frayling, Anna Murray, Steve Franks, Marjo-Riitta Järvelin, Frank H de Jong, Olli Raitakari, Alexander Teumer, Claes Ohlsson, Joanne M Murabito and John R B Perry

PLOS Genetics, 2012, vol. 8, issue 7, 1-12

Abstract: Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10−106), PRMT6 (rs17496332, 1p13.3, p = 1.4×10−11), GCKR (rs780093, 2p23.3, p = 2.2×10−16), ZBTB10 (rs440837, 8q21.13, p = 3.4×10−09), JMJD1C (rs7910927, 10q21.3, p = 6.1×10−35), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10−08), NR2F2 (rs8023580, 15q26.2, p = 8.3×10−12), ZNF652 (rs2411984, 17q21.32, p = 3.5×10−14), TDGF3 (rs1573036, Xq22.3, p = 4.1×10−14), LHCGR (rs10454142, 2p16.3, p = 1.3×10−07), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10−08), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10−06). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10−08, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance. Author Summary: Sex hormone-binding globulin (SHBG) is the key protein responsible for binding and transporting the sex steroid hormones, testosterone and estradiol, in the circulatory system. SHBG regulates their bioavailability and therefore their effects in the body. SHBG has been linked to chronic diseases including type 2 diabetes and to hormone-sensitive cancers such as breast and prostate cancer. SHBG concentrations are approximately 50% heritable in family studies, suggesting SHBG concentrations are under significant genetic control; yet, little is known about the specific genes that influence SHBG. We conducted a large study of the association of SHBG concentrations with markers in the human genome in ∼22,000 white men and women to determine which loci influence SHBG concentrations. Genes near the identified genomic markers in addition to the SHBG protein coding gene included PRMT6, GCKR, ZBTB10, JMJD1C, SLCO1B1, NR2F2, ZNF652, TDGF3, LHCGR, BAIAP2L1, and UGT2B15. These genes represent a wide range of biologic pathways that may relate to SHBG function and sex steroid hormone biology, including liver function, lipid metabolism, carbohydrate metabolism and type 2 diabetes, and the development and progression of sex steroid hormone-responsive cancers.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002805 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 02805&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1002805

DOI: 10.1371/journal.pgen.1002805

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1002805