EconPapers    
Economics at your fingertips  
 

A Unified Method for Detecting Secondary Trait Associations with Rare Variants: Application to Sequence Data

Dajiang J Liu and Suzanne M Leal

PLOS Genetics, 2012, vol. 8, issue 11, 1-13

Abstract: Next-generation sequencing has made possible the detection of rare variant (RV) associations with quantitative traits (QT). Due to high sequencing cost, many studies can only sequence a modest number of selected samples with extreme QT. Therefore association testing in individual studies can be underpowered. Besides the primary trait, many clinically important secondary traits are often measured. It is highly beneficial if multiple studies can be jointly analyzed for detecting associations with commonly measured traits. However, analyzing secondary traits in selected samples can be biased if sample ascertainment is not properly modeled. Some methods exist for analyzing secondary traits in selected samples, where some burden tests can be implemented. However p-values can only be evaluated analytically via asymptotic approximations, which may not be accurate. Additionally, potentially more powerful sequence kernel association tests, variable selection-based methods, and burden tests that require permutations cannot be incorporated. To overcome these limitations, we developed a unified method for analyzing secondary trait associations with RVs (STAR) in selected samples, incorporating all RV tests. Statistical significance can be evaluated either through permutations or analytically. STAR makes it possible to apply more powerful RV tests to analyze secondary trait associations. It also enables jointly analyzing multiple cohorts ascertained under different study designs, which greatly boosts power. The performance of STAR and commonly used RV association tests were comprehensively evaluated using simulation studies. STAR was also implemented to analyze a dataset from the SardiNIA project where samples with extreme low-density lipoprotein levels were sequenced. A significant association between LDLR and systolic blood pressure was identified, which is supported by pharmacogenetic studies. In summary, for sequencing studies, STAR is an important tool for detecting secondary-trait RV associations. Author Summary: Next-generation sequencing has greatly expanded our ability to identify missing heritability due to rare variants. In order to increase the power to detect associations, one desirable study design is to combine samples from multiple cohorts for mapping commonly measured traits. However, many current studies sequence selected samples (e.g. samples with extreme QT), which can bias the analysis of secondary traits, unless the sampling ascertainment mechanisms are properly adjusted. We developed a unified method for detecting secondary trait associations with rare variants (STAR) in selected and random samples, which can flexibly incorporate all rare variant association tests and allow joint analysis of multiple cohorts ascertained under different study designs. We demonstrate via simulations that STAR greatly boosts the power for detecting secondary trait associations. As an application of STAR, a dataset from the SardiNIA project was analyzed, where DNA samples from well-phenotyped individuals with extreme low-density lipoprotein levels were sequenced. LDLR was identified to be significantly associated with systolic blood pressure, which is supported by a previous pharmacogenetics study. In conclusion, STAR is an important tool for sequence-based association studies.

Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003075 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 03075&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1003075

DOI: 10.1371/journal.pgen.1003075

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1003075