EconPapers    
Economics at your fingertips  
 

Gene-Based Testing of Interactions in Association Studies of Quantitative Traits

Li Ma, Andrew G Clark and Alon Keinan

PLOS Genetics, 2013, vol. 9, issue 2, 1-12

Abstract: Various methods have been developed for identifying gene–gene interactions in genome-wide association studies (GWAS). However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene–gene interaction (GGG) tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein–protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies. Author Summary: Epistasis is likely to play a significant role in complex diseases or traits and is one of the many possible explanations for “missing heritability.” However, epistatic interactions have been difficult to detect in genome-wide association studies (GWAS) due to the limited power caused by the multiple-testing correction from the large number of tests conducted. Gene-based gene–gene interaction (GGG) tests might hold the key to relaxing the multiple-testing correction burden and increasing the power for identifying epistatic interactions in GWAS. Here, we developed GGG tests of quantitative traits by extending four P value combining methods and evaluated their type I error rates and power using extensive simulations. All four GGG tests are more powerful than a principal component-based test. We also applied our GGG tests to data from the Atherosclerosis Risk in Communities study and found five gene-level interactions associated with the levels of total cholesterol and high-density lipoprotein cholesterol (HDL-C). One interaction between SMAD3 and NEDD9 on HDL-C was further replicated in an independent sample from the Multi-Ethnic Study of Atherosclerosis.

Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003321 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 03321&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1003321

DOI: 10.1371/journal.pgen.1003321

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1003321