EconPapers    
Economics at your fingertips  
 

Ablating Adult Neurogenesis in the Rat Has No Effect on Spatial Processing: Evidence from a Novel Pharmacogenetic Model

James O Groves, Isla Leslie, Guo-Jen Huang, Stephen B McHugh, Amy Taylor, Richard Mott, Marcus Munafò, David M Bannerman and Jonathan Flint

PLOS Genetics, 2013, vol. 9, issue 9, 1-16

Abstract: The function of adult neurogenesis in the rodent brain remains unclear. Ablation of adult born neurons has yielded conflicting results about emotional and cognitive impairments. One hypothesis is that adult neurogenesis in the hippocampus enables spatial pattern separation, allowing animals to distinguish between similar stimuli. We investigated whether spatial pattern separation and other putative hippocampal functions of adult neurogenesis were altered in a novel genetic model of neurogenesis ablation in the rat. In rats engineered to express thymidine kinase (TK) from a promoter of the rat glial fibrillary acidic protein (GFAP), ganciclovir treatment reduced new neurons by 98%. GFAP-TK rats showed no significant difference from controls in spatial pattern separation on the radial maze, spatial learning in the water maze, contextual or cued fear conditioning. Meta-analysis of all published studies found no significant effects for ablation of adult neurogenesis on spatial memory, cue conditioning or ethological measures of anxiety. An effect on contextual freezing was significant at a threshold of 5% (P = 0.04), but not at a threshold corrected for multiple testing. The meta-analysis revealed remarkably high levels of heterogeneity among studies of hippocampal function. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.Author Summary: Adult neurogenesis occurs in the rodent brain, but its function remains unclear. Current theories support the view that adult neurogenesis in the hippocampus supports pattern separation in the hippocampus, thereby allowing animals to distinguish between similar, overlapping inputs. However the effects of pharmacological, radiation and genetic ablation of adult neurogenesis on putative hippocampal functions have been inconsistent. We developed a novel genetic model to ablate adult neurogenesis in the rat. We found that we could reduce adult neurogenesis by 98%. Rats without adult neurogenesis showed no significant difference from controls in learning and memory tasks nor spatial pattern separation. We investigated the sources of heterogeneity in published results using a meta-analysis. The source of this heterogeneity remains unclear and poses a challenge for studies of the function of adult neurogenesis.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003718 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 03718&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1003718

DOI: 10.1371/journal.pgen.1003718

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1003718