Mining the Human Phenome Using Allelic Scores That Index Biological Intermediates
Martin Evans,
Marie Jo A Brion,
Lavinia Paternoster,
John P Kemp,
George McMahon,
Marcus Munafò,
John B Whitfield,
Sarah E Medland,
Grant W Montgomery,
The GIANT Consortium,
The CRP Consortium,
The TAG Consortium,
Nicholas J Timpson,
Beate St. Pourcain,
Debbie A Lawlor,
Nicholas G Martin,
Abbas Dehghan,
Joel Hirschhorn and
George Davey Smith
PLOS Genetics, 2013, vol. 9, issue 10, 1-15
Abstract:
It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Author Summary: The standard approach in genome-wide association studies is to analyse the relationship between genetic variants and disease one marker at a time. Significant associations between markers and disease are then used as evidence to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically only explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates than single markers, and then use these scores to data mine genome-wide association studies. We show how allelic scores derived from known variants as well as allelic scores derived from hundreds of thousands of genetic markers across the genome explain significant portions of the variance in body mass index, levels of C-reactive protein, and LDLc cholesterol, and many of these scores show expected correlations with disease. Power calculations confirm the feasibility of scaling our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. Our method represents a simple way in which tens of thousands of molecular phenotypes could be screened for potential causal relationships with disease.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003919 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 03919&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1003919
DOI: 10.1371/journal.pgen.1003919
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().