EconPapers    
Economics at your fingertips  
 

Negative Feedback and Transcriptional Overshooting in a Regulatory Network for Horizontal Gene Transfer

Raul Fernandez-Lopez, Irene del Campo, Carlos Revilla, Ana Cuevas and Fernando de la Cruz

PLOS Genetics, 2014, vol. 10, issue 2, 1-15

Abstract: Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection.Author Summary: In the environment, bacteria often evolve by the acquisition of new genes from different species. Plasmids are small DNA molecules that mediate horizontal gene transfer in bacteria, thus they are fundamental agents for the spread of antibiotic resistances. Plasmids replicate inside the bacterial cytoplasm, and propagate infectiously by contact. Plasmids control these two ways of multiplication, but like many other symbionts they suffer from a tradeoff. If plasmids become very infective, they can spread fast and successfully, but this damages the bacterial hosts they depend upon. If, on the contrary, plasmids become very mild, the host is able to grow better but the ability of plasmids to infect new hosts is hampered. We have studied the regulatory mechanisms plasmids use to overcome this paradox. We discovered that negative feedback, a regulatory motif ubiquitous in the plasmid network, allows transient activation of plasmid functions immediately after plasmids invade a new host. This might be an adaptive strategy for plasmids to be highly infective without damaging their hosts, and it illustrates a natural mechanism for DNA transplantation that could be implemented in synthetic genomic transplants.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004171 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 04171&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1004171

DOI: 10.1371/journal.pgen.1004171

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pgen00:1004171