Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies
Ronald de Vlaming,
Aysu Okbay,
Cornelius A Rietveld,
Magnus Johannesson,
Patrik K E Magnusson,
André G Uitterlinden,
Frank J A van Rooij,
Albert Hofman,
Patrick Groenen (),
Roy Thurik and
Philipp Koellinger
PLOS Genetics, 2017, vol. 13, issue 1, 1-23
Abstract:
Large-scale genome-wide association results are typically obtained from a fixed-effects meta-analysis of GWAS summary statistics from multiple studies spanning different regions and/or time periods. This approach averages the estimated effects of genetic variants across studies. In case genetic effects are heterogeneous across studies, the statistical power of a GWAS and the predictive accuracy of polygenic scores are attenuated, contributing to the so-called ‘missing heritability’. Here, we describe the online Meta-GWAS Accuracy and Power (MetaGAP) calculator (available at www.devlaming.eu) which quantifies this attenuation based on a novel multi-study framework. By means of simulation studies, we show that under a wide range of genetic architectures, the statistical power and predictive accuracy provided by this calculator are accurate. We compare the predictions from the MetaGAP calculator with actual results obtained in the GWAS literature. Specifically, we use genomic-relatedness-matrix restricted maximum likelihood to estimate the SNP heritability and cross-study genetic correlation of height, BMI, years of education, and self-rated health in three large samples. These estimates are used as input parameters for the MetaGAP calculator. Results from the calculator suggest that cross-study heterogeneity has led to attenuation of statistical power and predictive accuracy in recent large-scale GWAS efforts on these traits (e.g., for years of education, we estimate a relative loss of 51–62% in the number of genome-wide significant loci and a relative loss in polygenic score R2 of 36–38%). Hence, cross-study heterogeneity contributes to the missing heritability.Author Summary: Large-scale genome-wide association studies are uncovering the genetic architecture of traits which are affected by many genetic variants. In such efforts, one typically meta-analyzes association results from multiple studies spanning different regions and/or time periods. Results from such efforts do not yet capture a large share of the heritability. The origins of this so-called ‘missing heritability’ have been strongly debated. One factor exacerbating the missing heritability is heterogeneity in the effects of genetic variants across studies. The effect of this type of heterogeneity on statistical power to detect associated genetic variants and the accuracy of polygenic predictions is poorly understood. In the current study, we derive the precise effects of heterogeneity in genetic effects across studies on both the statistical power to detect associated genetic variants as well as the accuracy of polygenic predictions. We present an online calculator, available at www.devlaming.eu, which accounts for these effects. By means of this calculator, we show that imperfect genetic correlations between studies substantially decrease statistical power and predictive accuracy and, thereby, contribute to the missing heritability. The MetaGAP calculator helps researchers to gauge how sensitive their results will be to heterogeneity in genetic effects across studies. If strong heterogeneity is expected, random-effects meta-analysis methods should be used instead of fixed-effects methods.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006495 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 06495&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1006495
DOI: 10.1371/journal.pgen.1006495
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().