EconPapers    
Economics at your fingertips  
 

Genetic Variation in the Social Environment Contributes to Health and Disease

Amelie Baud, Megan K Mulligan, Francesco Paolo Casale, Jesse F Ingels, Casey J Bohl, Jacques Callebert, Jean-Marie Launay, Jon Krohn, Andres Legarra, Robert W Williams and Oliver Stegle

PLOS Genetics, 2017, vol. 13, issue 1, 1-25

Abstract: Assessing the impact of the social environment on health and disease is challenging. As social effects are in part determined by the genetic makeup of social partners, they can be studied from associations between genotypes of one individual and phenotype of another (social genetic effects, SGE, also called indirect genetic effects). For the first time we quantified the contribution of SGE to more than 100 organismal phenotypes and genome-wide gene expression measured in laboratory mice. We find that genetic variation in cage mates (i.e. SGE) contributes to variation in organismal and molecular measures related to anxiety, wound healing, immune function, and body weight. Social genetic effects explained up to 29% of phenotypic variance, and for several traits their contribution exceeded that of direct genetic effects (effects of an individual’s genotypes on its own phenotype). Importantly, we show that ignoring SGE can severely bias estimates of direct genetic effects (heritability). Thus SGE may be an important source of “missing heritability” in studies of complex traits in human populations. In summary, our study uncovers an important contribution of the social environment to phenotypic variation, sets the basis for using SGE to dissect social effects, and identifies an opportunity to improve studies of direct genetic effects.Author Summary: Daily interactions between individuals can influence their health both in positive and negative ways. Often the mechanisms mediating social effects are unknown, so current approaches to study social effects are limited to a few phenotypes for which the mediating mechanisms are known a priori or suspected. Here we propose to leverage the fact that most traits are genetically controlled to investigate the influence of the social environment. To do so, we study associations between genotypes of one individual and phenotype of another individual (social genetic effects, SGE, also called indirect genetic effects). Importantly, SGE can be studied even when the traits that mediate the influence of the social environment are not known. For the first time we quantified the contribution of SGE to more than 100 organismal phenotypes and genome-wide gene expression measured in laboratory mice. We find that genetic variation in cage mates (i.e. SGE) explains up to 29% of the variation in anxiety, wound healing, immune function, and body weight. Hence our study uncovers an unexpectedly large influence of the social environment. Additionally, we show that ignoring SGE can severely bias estimates of direct genetic effects (effects of an individual’s genotypes on its own phenotype), which has important implications for the study of the genetic basis of complex traits.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006498 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 06498&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1006498

DOI: 10.1371/journal.pgen.1006498

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1006498