EconPapers    
Economics at your fingertips  
 

Composite likelihood method for inferring local pedigrees

Amy Ko and Rasmus Nielsen

PLOS Genetics, 2017, vol. 13, issue 8, 1-21

Abstract: Pedigrees contain information about the genealogical relationships among individuals and are of fundamental importance in many areas of genetic studies. However, pedigrees are often unknown and must be inferred from genetic data. Despite the importance of pedigree inference, existing methods are limited to inferring only close relationships or analyzing a small number of individuals or loci. We present a simulated annealing method for estimating pedigrees in large samples of otherwise seemingly unrelated individuals using genome-wide SNP data. The method supports complex pedigree structures such as polygamous families, multi-generational families, and pedigrees in which many of the member individuals are missing. Computational speed is greatly enhanced by the use of a composite likelihood function which approximates the full likelihood. We validate our method on simulated data and show that it can infer distant relatives more accurately than existing methods. Furthermore, we illustrate the utility of the method on a sample of Greenlandic Inuit.Author summary: Pedigrees contain information about the genealogical relationships among individuals. This information can be used in many areas of genetic studies such as disease association studies, conservation efforts, and for inferences about the demographic history and social structure of a population. Despite their importance, pedigrees are often unknown and must be estimated from genetic information. However, pedigree inference remains a difficult problem due to the high cost of likelihood computation and the enormous number of possible pedigrees that must be considered. These difficulties limit existing methods in their ability to infer pedigrees when the sample size or the number of markers is large, or when the sample contains only distant relatives. In this report, we present a method that circumvents these computational challenges in order to infer pedigrees of complex structure for a large number of individuals. Using simulations, we find that the method can infer distant relatives much more accurately than existing methods. Furthermore, we show that even pairwise inferences of relatedness can be improved substantially by consideration of the pedigree structure with other related individuals in the sample.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006963 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 06963&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1006963

DOI: 10.1371/journal.pgen.1006963

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-22
Handle: RePEc:plo:pgen00:1006963