Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells
Uri Weissbein,
Omer Plotnik,
Dan Vershkov and
Nissim Benvenisty
PLOS Genetics, 2017, vol. 13, issue 8, 1-16
Abstract:
Human pluripotent stem cells (hPSCs) are an important player in disease modeling and regenerative medicine. Nonetheless, multiple studies uncovered their inherent genetic instability upon prolonged culturing, where specific chromosomal aberrations provide cells with a growth advantage. These positively selected modifications have dramatic effects on multiple cellular characteristics. Epigenetic aberrations also possess the potential of changing gene expression and altering cellular functions. In the current study we assessed the landscape of DNA methylation aberrations during prolonged culturing of hPSCs, and defined a set of genes which are recurrently hypermethylated and silenced. We further focused on one of these genes, testis-specific Y-encoded like protein 5 (TSPYL5), and demonstrated that when silenced, differentiation-related genes and tumor-suppressor genes are downregulated, while pluripotency- and growth promoting genes are upregulated. This process is similar to the hypermethylation-mediated inactivation of certain genes during tumor development. Our analysis highlights the existence and importance of recurrent epigenetic aberrations in hPSCs during prolonged culturing.Author summary: hPSCs were shown to acquire genetic aberrations during their growth in culture. The aberrations are non-random and positively selected, by altering multiple cellular phenotypes. Similarly to genetic mutations, epigenetic aberrations may also change gene expression levels, leading to altered cellular behaviors, as seen in tumors. In this study we focus on methylation changes, and we showed that there is a set of genes which are recurrently hypermethylated and silenced in high passage cells. One of these genes, TSPYL5, was shown to be downregulated by hypermethylation in multiple cancer types. We showed that upon its silencing in hPSC, differentiation genes and tumor-suppressor genes are downregulated, and pluripotency- and growth promoting genes are upregulated, which drive the positive selection. These results highlight another challenge faced by hPSC in regard to maintenance of intact gene expression program, and emphasize the role of epimutations described in cancer cells also to hPSCs.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006979 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 06979&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1006979
DOI: 10.1371/journal.pgen.1006979
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().