Detecting archaic introgression using an unadmixed outgroup
Laurits Skov,
Ruoyun Hui,
Vladimir Shchur,
Asger Hobolth,
Aylwyn Scally,
Mikkel Heide Schierup and
Richard Durbin
PLOS Genetics, 2018, vol. 14, issue 9, 1-15
Abstract:
Human populations outside of Africa have experienced at least two bouts of introgression from archaic humans, from Neanderthals and Denisovans. In Papuans there is prior evidence of both these introgressions. Here we present a new approach to detect segments of individual genomes of archaic origin without using an archaic reference genome. The approach is based on a hidden Markov model that identifies genomic regions with a high density of single nucleotide variants (SNVs) not seen in unadmixed populations. We show using simulations that this provides a powerful approach to identifying segments of archaic introgression with a low rate of false detection, given data from a suitable outgroup population is available, without the archaic introgression but containing a majority of the variation that arose since initial separation from the archaic lineage. Furthermore our approach is able to infer admixture proportions and the times both of admixture and of initial divergence between the human and archaic populations. We apply the model to detect archaic introgression in 89 Papuans and show how the identified segments can be assigned to likely Neanderthal or Denisovan origin. We report more Denisovan admixture than previous studies and find a shift in size distribution of fragments of Neanderthal and Denisovan origin that is compatible with a difference in admixture time. Furthermore, we identify small amounts of Denisova ancestry in South East Asians and South Asians.Author summary: The genetic history of present-day individuals includes episodes of mating between divergent groups, which have led to 'introgressed' genetic material persisting in modern genome sequences. Perhaps the most notable examples of such events in humans are the introgressions from Neanderthals into non-Africans 50,000 or so years ago, and from a related archaic group known as Denisovans into the ancestors of indigenous people from Papua-New Guinea and Australia. Methods to identify introgressions and the genomic regions that derive from them generally involve the use of reference genome sequences for the source populations. However, there are advantages in having methods independent of reference sequences, both to reduce bias and to detect possible introgression from groups for which we currently lack a reference genome. In this paper we describe such an approach, in a statistical framework which exploits the fact that introgressed regions will contain a high density of genetic variants that are private to the group receiving the divergent material. We apply this method to 89 Papuan genome sequences, estimating times of introgression and initial divergence between archaic and modern humans, and compare it to other related methods.
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007641 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 07641&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1007641
DOI: 10.1371/journal.pgen.1007641
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().