EconPapers    
Economics at your fingertips  
 

Distinct CED-10/Rac1 domains confer context-specific functions in development

Steffen Nørgaard, Shuer Deng, Wei Cao and Roger Pocock

PLOS Genetics, 2018, vol. 14, issue 9, 1-24

Abstract: Rac GTPases act as master switches to coordinate multiple interweaved signaling pathways. A major function for Rac GTPases is to control neurite development by influencing downstream effector molecules and pathways. In Caenorhabditis elegans, the Rac proteins CED-10, RAC-2 and MIG-2 act in parallel to control axon outgrowth and guidance. Here, we have identified a single glycine residue in the CED-10/Rac1 Switch 1 region that confers a non-redundant function in axon outgrowth but not guidance. Mutation of this glycine to glutamic acid (G30E) reduces GTP binding and inhibits axon outgrowth but does not affect other canonical CED-10 functions. This demonstrates previously unappreciated domain-specific functions within the CED-10 protein. Further, we reveal that when CED-10 function is diminished, the adaptor protein NAB-1 (Neurabin) and its interacting partner SYD-1 (Rho-GAP-like protein) can act as inhibitors of axon outgrowth. Together, we reveal that specific domains and residues within Rac GTPases can confer context-dependent functions during animal development.Author summary: Brain development requires that neurite outgrowth and guidance are precisely regulated. Previous studies have shown that molecular switch proteins called Rac GTPases perform redundant functions in controlling neurite development. Using a pair of bilateral neurons in the nematode Caenorhabditis elegans to model neurite development, we found that a single amino acid in a conserved domain of the Rac GTPase CED-10 is crucial for controlling neurite outgrowth in a partially non-redundant manner. Further, we revealed that lesions in discrete domains in the CED-10 protein lead to distinct developmental defects. Therefore, our in vivo study proposes that regulation of distinct signalling pathways through Rac GTPase protein domains can drive different developmental outcomes.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007670 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 07670&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1007670

DOI: 10.1371/journal.pgen.1007670

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1007670