EconPapers    
Economics at your fingertips  
 

Bayesian multivariate reanalysis of large genetic studies identifies many new associations

Michael C Turchin and Matthew Stephens

PLOS Genetics, 2019, vol. 15, issue 10, 1-18

Abstract: Genome-wide association studies (GWAS) have now been conducted for hundreds of phenotypes of relevance to human health. Many such GWAS involve multiple closely-related phenotypes collected on the same samples. However, the vast majority of these GWAS have been analyzed using simple univariate analyses, which consider one phenotype at a time. This is despite the fact that, at least in simulation experiments, multivariate analyses have been shown to be more powerful at detecting associations. Here, we conduct multivariate association analyses on 13 different publicly-available GWAS datasets that involve multiple closely-related phenotypes. These data include large studies of anthropometric traits (GIANT), plasma lipid traits (GlobalLipids), and red blood cell traits (HaemgenRBC). Our analyses identify many new associations (433 in total across the 13 studies), many of which replicate when follow-up samples are available. Overall, our results demonstrate that multivariate analyses can help make more effective use of data from both existing and future GWAS.Author summary: Genome-wide association studies (GWAS) have become a common and powerful tool for identifying significant correlations between markers of genetic variation and physical traits of interest. Often these studies are conducted by comparing genetic variation against single traits one at a time (‘univariate’); however, it has previously been shown that it is possible to increase your power to detect significant associations by comparing genetic variation against multiple traits simultaneously (‘multivariate’). Despite this apparent increase in power though, researchers still rarely conduct multivariate GWAS, even when studies have multiple traits readily available. Here, we reanalyze 13 previously published GWAS using a multivariate method and find >400 additional associations. Our method makes use of univariate GWAS summary statistics and is available as a software package, thus making it accessible to other researchers interested in conducting the same analyses. We also show, using studies that have multiple releases, that our new associations have high rates of replication. Overall, we argue multivariate approaches in GWAS should no longer be overlooked and how, often, there is low-hanging fruit in the form of new associations by running these methods on data already collected.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008431 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 08431&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1008431

DOI: 10.1371/journal.pgen.1008431

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1008431