The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance
Zong Miao,
Marcus Alvarez,
Arthur Ko,
Yash Bhagat,
Elior Rahmani,
Brandon Jew,
Sini Heinonen,
Linda Liliana Muñoz-Hernandez,
Miguel Herrera-Hernandez,
Carlos Aguilar-Salinas,
Teresa Tusie-Luna,
Karen L Mohlke,
Markku Laakso,
Kirsi H Pietiläinen,
Eran Halperin and
Päivi Pajukanta
PLOS Genetics, 2020, vol. 16, issue 9, 1-23
Abstract:
Reverse causality has made it difficult to establish the causal directions between obesity and prediabetes and obesity and insulin resistance. To disentangle whether obesity causally drives prediabetes and insulin resistance already in non-diabetic individuals, we utilized the UK Biobank and METSIM cohort to perform a Mendelian randomization (MR) analyses in the non-diabetic individuals. Our results suggest that both prediabetes and systemic insulin resistance are caused by obesity (p = 1.2×10−3 and p = 3.1×10−24). As obesity reflects the amount of body fat, we next studied how adipose tissue affects insulin resistance. We performed both bulk RNA-sequencing and single nucleus RNA sequencing on frozen human subcutaneous adipose biopsies to assess adipose cell-type heterogeneity and mitochondrial (MT) gene expression in insulin resistance. We discovered that the adipose MT gene expression and body fat percent are both independently associated with insulin resistance (p≤0.05 for each) when adjusting for the decomposed adipose cell-type proportions. Next, we showed that these 3 factors, adipose MT gene expression, body fat percent, and adipose cell types, explain a substantial amount (44.39%) of variance in insulin resistance and can be used to predict it (p≤2.64×10−5 in 3 independent human cohorts). In summary, we demonstrated that obesity is a strong determinant of both prediabetes and insulin resistance, and discovered that individuals’ adipose cell-type composition, adipose MT gene expression, and body fat percent predict their insulin resistance, emphasizing the critical role of adipose tissue in systemic insulin resistance.Author summary: Obesity is a global health epidemic predisposing to type 2 diabetes (T2D) and other cardiometabolic disorders. Previous studies have shown that obesity has a causal effect on T2D; however, it remains unknown whether obesity causes prediabetes and insulin resistance already in non-diabetic individuals. By utilizing almost half a million individuals from the UK Biobank and the Finnish METSIM cohort, we identified a significant causal effect of obesity on prediabetes and insulin resistance among the non-diabetic individuals. Next, we investigated the role of subcutaneous adipose tissue in these obesogenic effects. We discovered that the adipose mitochondrial gene expression and body fat percent are independently associated with insulin resistance after adjusting for the tissue heterogeneity. For the latter, we estimated the adipose cell type proportions by utilizing single-nucleus RNA sequencing of frozen adipose tissue biopsies. Moreover, we established a prediction model to estimate insulin resistance using body fat percent and adipose RNA-sequencing data, which enlightens the importance of adipose tissue in insulin resistance and provides a helpful tool to impute the insulin resistance for existing adipose RNA-sequencing cohorts. Overall, we discover the potential causal effect of obesity on prediabetes and insulin resistance and the key role of adipose tissue in insulin resistance.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009018 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 09018&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1009018
DOI: 10.1371/journal.pgen.1009018
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().