EconPapers    
Economics at your fingertips  
 

MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies

Arjun Bhattacharya, Yun Li and Michael I Love

PLOS Genetics, 2021, vol. 17, issue 3, 1-30

Abstract: Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites, microRNAs, and transcription factors) highly associated with gene expression and train predictive models for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the final predictive model of gene expression, along with local SNPs. In the second extension, we assess distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation effects are then included in the transcriptomic prediction model with the local SNPs around the gene of interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show considerable gains of percent variance explained (1–2% additive increase) of gene expression and TWAS power to detect gene-trait associations. This integrative approach to transcriptome-wide imputation and association studies aids in identifying the complex interactions underlying genetic regulation within a tissue and important risk genes for various traits and disorders.Author summary: Transcriptome-wide association studies (TWAS) are a powerful strategy to study gene-trait associations by integrating genome-wide association studies (GWAS) with gene expression datasets. TWAS increases study power and interpretability by mapping genetic variants to genes. However, traditional TWAS consider only variants that are close to a gene and thus ignores important variants far away from the gene that may be involved in complex regulatory mechanisms. Here, we present MOSTWAS (Multi-Omic Strategies for TWAS), a suite of tools that extends the TWAS framework to include these distal variants. MOSTWAS leverages multi-omic data of regulatory biomarkers (transcription factors, microRNAs, epigenetics) and borrows from techniques in mediation analysis to prioritize distal variants that are around these regulatory biomarkers. Using simulations and real public data from brain tissue and breast tumors, we show that MOSTWAS improves upon traditional TWAS in both predictive performance and power to detect gene-trait associations. MOSTWAS also aids in identifying possible mechanisms for gene regulation using a novel added-last test that assesses the added information gained from the distal variants beyond the local association. In conclusion, our method aids in detecting important risk genes for traits and disorders and the possible complex interactions underlying genetic regulation within a tissue.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009398 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 09398&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1009398

DOI: 10.1371/journal.pgen.1009398

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1009398